درباره شارا | تماس | جستجوی پیشرفته | پیوندها | موبایل | RSS
 خانه    تازه ها    پایگاه اخبار    پایگاه اندیشه    پایگاه کتاب    پایگاه اطلاعات    پایگاه بین الملل    پایگاه چندرسانه ای    یایگاه امکانات  
دوشنبه، 7 خرداد 1397 - 14:12   

فراخوان سیزدهمین جشنواره ملی انتشارات روابط عمومی

  فراخوان سیزدهمین جشنواره ملی انتشارات روابط عمومی


ادامه ادامه مطلب یک

ناخشنودی از پاسخ‌های زاکربرگ، مدیر فیسبوک در پارلمان اروپا

  ناخشنودی از پاسخ‌های زاکربرگ، مدیر فیسبوک در پارلمان اروپا


ادامه ادامه مطلب دو

اربابان صنایع دیجیتال در کاخ الیزه؛ امانوئل ماکرون با زاکربرگ گفتگویی جداگانه دارد

  اربابان صنایع دیجیتال در کاخ الیزه؛ امانوئل ماکرون با زاکربرگ گفتگویی جداگانه دارد


ادامه ادامه مطلب سه

مزایای فناوری اطلاعات برای کارآفرینان

  مزایای فناوری اطلاعات برای کارآفرینان


ادامه ادامه مطلب چهار

   آخرین مطالب روابط عمومی  
  روابط عمومی دانشگاه مازندران رتبه برتر کشور
  واکاوی منزلت روابط عمومی در عصر حاضر
  تمدید طرح خدمت میان بانک ملی ایران و توسعه صادرات
  نگاهی تجربی به چالش های روابط عمومی
  افزایش منابع بانک شهر در ۳سال گذشته
  اقدامات ضروری برای اجرای مراسم جمعی
  چهار گام تا طراحی حرفه ای کتاب
  دو کارگاه آموزشی روابط عمومی برگزار می‌شود
  درگذشت پدر سینمای ایران
  تجلیل از مسئولان روابط عمومی های گرمسار
ادامه آخرین مطالب روابط عمومی
- اندازه متن: + -  کد خبر: 29513صفحه نخست » تازه های شبکه روابط عمومیسه شنبه، 26 اردیبهشت 1396 - 10:38
تماشا کردن از نگاه کامپیوتر
سیستم تشخیص چهره چگونه کار می ‏کند؟
درک دنیای بصری برای انسان‏ ها آنقدر ساده است که تقریبا تمامی عکس‏ العمل‏ های ما نسبت به محیط بصری اطراف به ‏صورت ناخودآگاه انجام می‏ گیرد.
  

شبکه اطلاع رسانی روابط عمومی ایران (شارا)، درک دنیای بصری برای انسان‏ها آنقدر ساده است که تقریبا تمامی عکس‏العمل‏های ما نسبت به محیط بصری اطراف به‏صورت ناخودآگاه انجام می‏گیرد. وقتی چیزی را می‏بینیم، اغلب اوقات برای تشخیص آن نیازی به مطالعه (ذهنی) نداریم. اما این مساله در مورد کامپیوترها بسیار پیچیده است. تشخیص چهره انسان از دیگر اجسام و موجودات محیط، برای کامپیوترها یک مشکل بسیار بزرگ محسوب می‏شود. علاوه‌بر این، حل این مساله نیز نیازمند تلاش و هزینه بسیار بالایی خواهد بود. امروزه تکنولوژی تشخیص چهره و بینایی کامپیوتر از اصلی‏ترین نیازهای علم و صنعت به‏شمار می‏آیند. پیشرفت بسیاری از تکنولوژی‏های امروزی از جمله خودروهای بدون راننده، نرم‏افزارهای تشخیص چهره، کارخانه‏های هوشمند که بتوانند وجود خطا و ناهماهنگی در خط تولید را تشخیص دهند و نرم‏افزارهایی که به شرکت‌های بیمه امکان پردازش و دسته‏بندی اتوماتیک اسناد را بدهند، همگی به پیشرفت سیستم تشخیص تصویر و بینایی کامپیوتر بستگی دارند.

 

تعلیم بینایی به کامپیوتر سخت و پرهزینه است

یکی از راه‏های موثر برای حل این مشکل به‏کارگیری فراداده‏ها برای دیتاهای بدون ساختار است. شاید استخدام یک متخصص برای طبقه‏بندی و جداسازی آرشیو فیلم‏ها از آرشیو موسیقی کمی سخت به‏نظر برسد اما به‏کارگیری همین افراد متخصص برای آموزش سیستم مسیریابی یک خودروی بدون راننده جهت تشخیص عابرین پیاده از دیگر خودروها یا شناسایی، دسته‏بندی و فیلترکردن تصاویر روزانه میلیون‏ها کاربر شبکه‏های اجتماعی تقریبا غیرممکن است. بنابراین اولین راه‏حل این مشکل استفاده از شبکه‏های عصبی است. با اینکه از لحاظ تئوریک استفاده از شبکه‏های نورونی مرسوم جهت تحلیل تصاویر ممکن است، اما از لحاظ عملی و محاسباتی بسیار پرهزینه خواهد بود. برای مثال تحلیل یک تصویر نسبتا کوچک (50 × 50 پیکسل) نیازمند 900 داده ورودی و بیش از نیم میلیون پارامتر خواهد بود. شاید انجام این کار برای ماشین‏های محاسباتی امکان‏پذیر باشد اما زمانی که بخواهیم تصاویر بزرگ‌تر (500 × 500 پیکسل) را تحلیل و پردازش کنیم، تعداد ورودی و شبکه‏های نورونی مورد نیاز برای انجام این کار تقریبا غیرقابل شمارش خواهد بود.

 

چاره چیست؟

خوشبختانه با اعمال یکسری تغییرات در ساختار شبکه‏های عصبی، می‏توان تصاویر بزرگ‌تر را نیز پردازش کرد. این نوع شبکه‏های عصبی تغییر یافته را «شبکه‏های عصبی پیچیده» (CNNs) می‏نامند. یکی از مزایای شبکه‏های عصبی، کاربردپذیری آنها در مصارف مختلف است؛ اما پس از به‏کارگیری آنها در پردازش تصاویر می‏بینیم که این مزیت به یک مشقت تبدیل می‏شود. اما با طراحی شبکه‏های عصبی مختص پردازش تصاویر، می‏توانیم این ماموریت غیرممکن را تا حدی ممکن بسازیم. یکی از مزیت‏های شبکه‏های عصبی پیچیده، تشخیص دو پیکسل مجاور یکدیگر به‌عنوان دو پیکسل مرتبط است به همین دلیل برای پردازش پیکسل‏های مجاور از یک سلول عصبی استفاده می‏شود. به بیان فنی‏تر، شبکه‏های عصبی پیچیده با فیلتر و تلفیق پیکسل‏های مجاور در تصاویر، پردازش تصاویر از لحاظ حجم محاسباتی را تا حد زیادی کاهش می‏دهند.

این در حالی است که در شبکه‏های عصبی معمولی برای پردازش هر پیکسل از یک سلول عصبی استفاده می‏شود که همین مساله یکی از دلایل اصلی افزایش تعداد نورون‏های عصبی مورد نیاز برای پردازش تصویر خواهد بود. ناگفته نماند که افزایش تعداد نورون‏های عصبی موجب افزایش بار محاسباتی و درنتیجه کاهش دقت در محاسبات خواهد شد. شبکه‏های عصبی پیچیده به جای اتصال هر ورودی به یک نورون، با محدود کردن روابط بین پیکسل‏های تصاویر، هر نورون را مسوول پردازش یک دسته از پیکسل‏ها می‏کند (3×3 یا 5×5 پیکسل برای هر نورون). به این ترتیب، هر نورون مسوولیت پردازش بخش کوچکی از تصویر را به عهده می‏گیرد. این ساختار کم و بیش به ساختار عصبی نورون‏های مغز که در آن هر سلول عصبی مسوولیت پاسخگویی به بخش خاصی از بدن را به عهده می‏گیرند، شباهت‏هایی دارد.

 

ساختار درونی شبکه‏ های عصبی

فیلترینگ پیکسل‏ها چگونه انجام می‏گیرد؟ راز انجام این کار در اضافه شدن دو لایه جدید به این شبکه عصبی است: لایه‏های درهم پیچیده و لایه‏های ادغام کننده. در پایین مراحل پردازش را به‏طور کامل شرح داده‏ایم. این مراحل در اصل به یک شبکه عصبی طراحی شده برای تشخیص اینکه یک زن سالخورده در تصاویر وجود دارد یا خیر، مربوط می‏شود. قدم اول مربوط به لایه درهم پیچیده است که این قدم خود شامل چند مرحله مجزا می‏شود. ابتدا تصویر یک پیرزن را به یکسری قطعات 3×3 پیکسلی تبدیل می‏کنیم. در قدم بعدی هریک از این قطعات را برای پردازش به درون یک نورون عصبی تک لایه می‌فرستیم. سپس مقادیر خروجی را به شکلی که از لحاظ عددی محتوای قسمت خاصی از تصاویر را معرفی می‏کنند، دسته‏بندی می‏کنیم. هر پیکسل وظیفه تعریف ارتفاع، طول و رنگ (سه بعد مختلف) را برعهده دارد. بنابراین در این مورد، هر قطعه تعریفی 3×3×3 خواهد داشت. در ضمن برای پردازش ویدئوها، بُعد زمان نیز درنظر گرفته می‏شود.

حال نوبت به لایه ادغام‌کننده می‏رسد که این دسته‏های سه‏بعدی یا چهار بعدی را دریافت کرده سپس آنها را به دسته‏هایی با سایز و ابعاد کوچک‌تر تبدیل می‏کند. محصول به‏دست آمده، دسته‏های ادغام شده‏ای هستند که تنها شامل بخش‏های با اهمیت می‏شوند و بخش‏های مشابه به یکدیگر و کم‏اهمیت حذف شده‏اند. این مرحله موجب کاهش حجم محاسبات تا بیشترین حد ممکن خواهد شد. در مرحله پایانی، دسته‏های تغییر سایز یافته (کوچک شده) را به‌عنوان ورودی برای شبکه‏های عصبی استفاده می‏کنیم. از آنجایی که سایز داده‏های ورودی در مرحله اول و دوم تاحد قابل‌توجهی کاهش داده شد، شبکه‏های عصبی معمولی هم می‏توانند بدون هیچ دردسری این داده‏ها را پردازش کنند. خروجی‏های به‏دست آمده از این مرحله پایانی نشاندهنده مقدار کارآیی سیستم در تشخیص تصاویر فرد سالخورده داخل تصاویر خواهد بود.

 

به ‏کارگیری شبکه‏ های عصبی

ساخت شبکه‏های عصبی پیچیده ممکن است زمان‏بر و بسیار پرهزینه باشد. ناگفته نماند که اخیرا رابط‏های برنامه‏نویسی مختلفی برای سازمان‏ها طراحی شده‏اند که به آنها امکان پردازش و تشخیص چهره را بدون نیاز به سیستم بینایی کامپیوتر شخصی یا تخصص در بخش یادگیری ماشینی می‏دهد. در پایین مهم‏ترین برنامه‏های کاربردی در این بخش را برایتان نام برده‏ایم.

Google Cloud Vision: این محصول شرکت گوگل که برپایه فریم‏ورک TensoFlow و رابط برنامه‏نویسی REST عمل می‏کند، قادر است اشیا و چهره افراد را تشخیص دهد. این رابط می‏تواند با استفاده از موتور جست‌وجوی تصویری گوگل، تصویر مشابه به یکدیگر در سراسر وب را جست‌وجو و پیدا کند.

IBM Watson Visual Recognition: این برنامه که به‌عنوان بخشی از پروژه Watson Developer Cloud شناخته می‏شود، از امکانات پیش‏فرض خوب و کارآمدی برخوردار است. این برنامه نیز همچون رابط کاربری گوگل از سیستم OCR و تشخیص NSFW برخوردار است. Clarif.ai می‏گوید: این سرویس تازه‏ وارد به عرصه تشخیص تصاویر است که از رابط برنامه نویسی REST نیز پشتیبانی می‏کند. یکی از نکات جالب این برنامه، پشتیبانی از ماژول‏های مختلفی است که می‏توانند در ساخت الگوریتم‏هایی که قابلیت تشخیص شرایط مختلف از جمله جشن عروسی، مسافرت و غذا و رستوران را دارند، کمک کنند.

با اینکه این رابط‏های برنامه‏نویسی و طراحی برای کاربردهای عمومی مناسب هستند، اما برای انجام وظایف تخصصی احتمالا به تهیه تجهیزات و دستگاه‏های حرفه‏ای نیاز خواهد بود. خوشبختانه کتابخانه‏های الکترونیکی امروزی با ارائه دیتاها به‏صورت از پیش محاسبه و بهینه شده، کار را برای دانشمندان امروزی بسیار آسان کرده‏اند و متخصصان می‏توانند بدون نیاز به محاسبه و پردازش گام به گام داده‏ها، با خیال راحت روی آموزش مدل‏ها تمرکز کنند. بسیاری از این مراکز از جمله TensorFlow، DeepLearning4J، Torch و Theano سال‌ها است که با موفقیت و در زمینه‏های مختلف مورد استفاده قرار می‏گیرند.

 

منبع: روزنامه دنیای اقتصاد - شماره 4046

 

   
  

اضافه نمودن به: Share/Save/Bookmark

نظر شما:
نام:
پست الکترونیکی:
نظر
 
  کد امنیتی:
 
   پربیننده ترین مطالب روابط عمومی  

  دو کارگاه آموزشی روابط عمومی برگزار می‌شود


   مراسم معارفه سرپرست روابط عمومی و امور بین الملل دانشگاه علوم پزشکی بابل


  نگاهی تجربی به چالش های روابط عمومی


  درگذشت پدر سینمای ایران


  چهار گام تا طراحی حرفه ای کتاب


  تجلیل از مسئولان روابط عمومی های گرمسار


  مدیر خانه مطبوعات آذربایجان‌شرقی: رسالت رسانه‌ها و مدیران روابط‌عمومی جدا از یکدیگر نیست


  روابط عمومی دانشگاه مازندران رتبه برتر کشور


  اقدامات ضروری برای اجرای مراسم جمعی


  به همت خانه مطبوعات؛ مدیران برتر روابط عمومی آذربایجان‌شرقی تجلیل شدند


 
 
 
مقالات
گفتگو
گزارش
آموزش
جهان روابط عمومی
مدیریت
رویدادها
روابط عمومی ایران
کتابخانه
تازه های شبکه
آخرین رویدادها
فن آوری های نو
تبلیغات و بازاریابی
ایده های برتر
بادپخش صوتی
گزارش تصویری
پیشنهادهای کاربران
اخبار بانک و بیمه
نیازمندی ها
خدمات
خبرنگار افتخاری
بخش اعضا
دانلود کتاب
پیوندها
جستجوی پیشرفته
موبایل
آر اس اس
بخشنامه ها
پیشکسوتان
لوح های سپاس
پیام های تسلیت
مناسبت ها
جملات حکیمانه
پایان نامه ها
درباره شارا
تماس با ما
Shara English
Public Relation
Social Media
Marketing
Events
Mobile
Content
Iran Pr
About Us - Contact US - Search
استفاده از مطالب این سایت با درج منبع مجاز است
تمام حقوق مادی و معنوی این سایت متعلق به شارا است
info@shara.ir
  خبر فوری: فراخوان سیزدهمین جشنواره ملی انتشارات روابط عمومی